confusion matrix 썸네일형 리스트형 [멋쟁이사자처럼 AI스쿨] TIL(23.3.22) confusion matrix confusion matrix 모델이 맞혔을 때 → T 모델이 틀렸을 때 → F 모델의 예측값이 True -> P 모델의 예측 값이 False -> N Precision : 예측값 기준 , tp / (tp + fp) > 1종 오류, 맞지 않는 걸 보고 맞다고 하는 것 ex) 스펨메일이 아닌데 스팸메일로 잘못 예측 임신이 아닌데 임신으로 잘못 예측 - precision이 낮다 : 참이 아닌데 참이라고 한 것이 많다 - precision이 지나치게 높다 : 참으로 예측한 경우가 필요 이상으로 적다 Recall : 실제값 기준, tp / (tp + fn) > 2종 오류, 맞는 것을 맞지 않다고 하는 것 ex) 암인데 암이 아니라고 잘못 예측 임신인데 임신이 아니라고 잘못 예측 - recall이 낮다 : 참인데.. 더보기 이전 1 다음